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CHAPTER ONE
1. a. 14,000 [1 + 6(.03)] = 16520.00

b. 14,000(1.03)
6

= 16,716.73

c. 14,000
[
1 + 66

365 (.03)
]

= 14,075.95

d. 14,000
[

318
365 (1.03)

2
+ 47

365 (1.03)
3
]

= 14909.98

2. a. 14,000(1.038)
5

= 16869.99

b. 14,000
[
1 + 5 96

365 (.038)
]

= 16799.92

c. 14,000
[

269
365 (1.038)

5
+ 96

365 (1.038)
6
]

= 17038.60

3. a(t) = t2 + t+ 1, and in = 2n
n2−n+1 from part (e) of Example 1.1.

Then in+1 = 2(n+1)

(n+1)2−(n+1)+1
= 2n+2

n2+n+1 . Assume in+1 ≥ in. Then
2n+2

n2+n+1 ≥
2n

n2−n+1 , or (2n)(n2 − n+ 1) ≥ 2n(n2 + n+ 1), or

(2n3 + 2) ≥ (2n3 + 2n2 + 2n), which is clearly false for all n ≥ 1.

4. a. a(0) =
√

1 + (i2 + 2i)0 = 1; a(1) =
√

1 + i2 + 2i = 1 + i.

b. d
dta(t) = 1

2

[
1 + (i2 + 2i)t2

]−1/2 · 2t = t
[1+(i2+2i)t2]1/2

> 0

for t > 0, so a(t) is increasing. Furthermore, root functions are
continuous in their domain.

c. a(t) =
√

1 + (i2 + 2i)t2 R 1 + it according as
1 + (i2 + 2i)t2 R 1 + 2it + i2t2, or according as 2it2 R 2it, or
according as t R 1. Then a(t) > 1 + it if t > 1, but a(t) < 1 + it
if t < 1.

d. Consider

∆(t) = (1 + i)
t − a(t) = (1 + i)

t −
[
1 + (i2 + 2i)t2

]1/2
.

We find
d
dt∆(t) = (1 + i)

t · ln(1 + i)− 1
2

[
1 + (i2 + 2i)t2

]−1/2 · 2(i2 + 2i)t

= (1 + i)
t · ln(1 + i)− (i2+2i)

[1/t2+(i2+2i)]1/2
.

Now as t gets larger, the negative term approaches the constant
(i2 + 2i)

1/2. Since (1 + i)
t increases, then eventually (1 + i)

t ·
ln(1 + i) exceeds the negative term, so d

dt∆(t) is eventually pos-
itive, so ∆(t) is eventually increasing, so (1 + i)

t eventually ex-
ceeds a(t).

1
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5. a. If 1 + in = a(n)
a(n−1) is constant, then

ln(1 + in) = ln [a(n)] − ln [a(n− 1)] = ∆ ln [a(n− 1)] is con-
stant as well. By the properties of finite differences, if ∆f(n)
is constant, then f(n) itself is a linear function. Thus we find
ln [a(n− 1)], and hence ln [a(n)] to be a linear function, so a(n) =
eln[a(n)] is an exponential function, which can be put in the form
(1 + i)

t.

b. No. The argument in (a) assumed integral values of t to establish
the properties of the ∆ operator.

6. a. Since A(n− 1) is the value of an investment at time n− 1, and
A(n) is its value at time n, the difference, In, is the growth due
to interest in the nth time period.

b. A(n)−A(0) = [A(n)−A(n− 1)] + [A(n− 1)−A(n− 2)] + · · ·
+ [A(1)−A(0)] = In + In−1 + · · ·+ I1

c. The result is intuitive. Clearly A(n)− A(0) is the total interest
earned over n periods, which is the sum of the interest earned in
each period.

d. i1 + i2 + · · ·+ in = a(1)−a(0)
a(0) + a(2)−a(1)

a(1) + · · ·

+a(n)−a(n−1)
a(n−1) 6= a(n)− a(0),

so no. The ir are rates, not amounts, so they are not additive
to any meaningful concept.

7. a. 1000 [1 + .04t] = 1400, so t =
14
10−1

.04 = 10.

b. 1000(1 + 12i) = 1500, so i =
15
10−1

12 = 4 1
6%.

c. 1000(1.04)
t

= 1400, so t = log 1.40
log 1.04 = 8.57894.

1000(1 + i)
12

= 1500, so i = (1.5)
1/12 − 1 = 3.4366%.

8. 1000(1 + it) = 1060 implies it = .06. Then

500
[
1 + ( 2

3 i)(2t)
]

= 500
[
1 + 4

3 it
]

= 500
[
1 + ( 4

3 )(.06)
]

= 540.

9. 6000(1.03)
4
(1.042)

6
= 8643.83

10. (1.043)(1.037)(1.05) = (1 + i)
3, so

i = [(1.043)(1.037)(1.05)]
1/3 − 1 = 4.332%.

11. We are given (1 + i)
x

= 2, 2(1 + i)
y

= 3, and (1 + i)
z

= 5.

In z − x− y years, 6 will grow to

6(1 + i)
z−x−y

= 6(1+i)z

(1+i)x(1+i)y = (6)(5)
(2)(1.5) = 10.
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12. We wish to prove that if (1 + i)
x

= (1 + 2i)
y, then x < 2y for all i,

i > 0. Assume x ≥ 2y. Then (1 + i)
x ≥ (1 + i)

2y. But (1 + i)
x

=

(1 + 2i)
y, so our implication is (1 + 2i)

y ≥ (1 + i)
2y, or

1 + 2i(y) + y(y−1)
2 4i2 + y(y−1)(y−2)

6 i3 + · · ·

≥ 1 + 2yi+ 2y(2y−1)
2 i2 + 2y(2y−1)(2y−2)

6 i3 + · · ·
or y

2 i
2(4y − 4) + y

6 i
3(8y2 − 24y + 16) + · · · ≥ y

2 i
2(4y − 2)

+y
6 i

3(8y2 − 12y + 4) + · · ·
But (4y−4) is less than (4y−2), so we reach a contradiction, implying
x < 2y. Therefore statement (a) is true.

13. a. PV = 1000(1− d)
3

= 884.74

b. (1 + i)
−1

= 1− d = .96, so i = (.96)
−1 − 1 = 4.1667%

c. PV = 1000(1 + i)
−3

= 884.74

14. a. PV = 14,000(1.04)
−6

= 11064.40

b. PV = 14,000(.96)
6

= 10958.61

c. A rate of discount equivalent to a rate of interest is numerically
smaller than that rate of interest. If the rates are numerically the
same, then the discount is greater than the equivalent interest,
so it produces a smaller discounted value.

15. a.

a(t) = 1 + it
(0,1)

b. The present value t years in the past is (1 + it)
−1; 1 − it will

turn negative in 1
i years.

16. dn = a(n)−a(n−1)
a(n) = (1+i)n−(1+i)n−1

(1+i)n = 1− 1
1+i , which is constant.

17. a. Starting with (1.16), d = i
1+i = i( 1

1+i ) = iv. Verbally, the
discount on one unit of money is the present value of the interest
on that unit.

b. Since v = 1
1+i , then i = 1

v − 1, so d = iv = ( 1
v − 1)v = 1 − v.

Verbally, the discount on one unit is equal to the unit minus its
discounted value.
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c. i − d = i − iv = i(1 − v) = id. Verbally, the difference between
the interest and the discount on a unit of money is the discount
on the interest itself.

d. Since d = i
1+i , then

1
d = 1+i

i , and 1
d −

1
i = i

i = 1.

e. d
(
1 + i

2

)
= d+ id

2 = d+ i−d
2 = i

2 + d
2 ; similarly,

i
(
1− d

2

)
= i− id

2 = i− i−d
2 = i

2 + d
2 .

f . i(1− d)
1/2

= d
1−d (1− d)

1/2
= d(1− d)

−1/2
= d(1 + i)

1/2

18. a. d3

(1−d)2
= d3

v2 = d3

( di )
2 (since d = iv) = i2d

b. (i−d)2

1−v = (id)2

d = i2d

c. (i− d)d = (id)d = id2, which is the exception

d. i3 − i3d = i3(1− d) = i3v = i3(di ) = i2d

e. Already is i2d

19. d = i
1+i , and we are given i = 210

L and dL = 200.

Substituting, we have 210/L
1+210/L · L = 200, or 210·L

L+210 = 200,

or 210L = 200L+ (200)(210). Then L = (200)(210)
10 = 4200.

20. We will calculate equivalent effective annual rates:

A: i = (1.01025)
4 − 1 = .041635

B: i = (1 + .04096
5 )

5 − 1 = .041637

C: i = (1− .04064
10 )

−10 − 1 = .041563

Thus B is the most advantageous to the investor (largest effective
annual rate), whereas C is most advantageous to Acme Trust (smallest
effective annual rate).

21. AV = 3000(1.009)
11

= 3310.73

22. a. (1 + i) = (1.024)
2, so i = (1.024)

2 − 1 = 4.8576%

b.
[
1− d(4)

4

]−4

= (1.024)
2, so d(4) = 4

[
1− (1.024)

−1/2
]

= 4.7153%

c.
[
1 + i(12)

12

]12

= (1.024)
2, so i(12) = 12

[
(1.024)

1/6 − 1
]

= 4.7527%

d. (1 + j)
6

= 1.024, so j = (1.024)
1/6 − 1 = .396%
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23. a. We are given 100(1 + j) = 102.50, so j = .025 effective per
half-year.

b. i(2) = 2j = 5%

c. i = (1.025)
2 − 1 = 5.0625%

d.
[
1− d(3)

3

]−3

= (1.025)
2, so d(3) = 3

[
1− (1.025)

−2/3
]

= 4.8981%

24. 150 = 20

(
1 +

d

4

)4·15(
1 +

.04

2

)2·25

+ 30

(
1 +

.04

2

)2·20

= 20

(
1 +

d

4

)60

(1.02)50 + 30(1.02)40

= 53.8318

(
1 +

d

4

)60

+ 66.2412(
1 + d

4

)60
= 150−53.8318

66.2412 = 1.45179

1 + d
4 = 1.0062326

∴ d = .02493

25. Dara: 500
(
1 + i

4

)4·11 ( i
4

)
Pramila: 1000

(
i
4

)
500

(
1 + i

4

)4·11 ( i
4

)
= 1000

(
i
4

)
(assume i > 0)(

1 + i
4

)44
= 2⇒ i = 4

(
2

1
44 − 1

)
= 4(.015878) = 0.06351

26.
[
1 + i(n)

n

]
= (1 + i)

1/n
= (1+i)1/6

(1+i)1/8
= (1 + i)

1/24. Therefore

1
n = 1

24 , so n = 24.

27.
[
1− d(7)

7

]−7

=
[
1 + i(5)

5

]5
, so d(7) = 7

[
1− (1 + i(5)

5 )
−5/7

]
28. v

(
1 + i(3)

3

)
= (1− d)(1 + i)

1/3

= (1− d)
1/2

(1 + i)
−1/2

(1 + i)
1/3

= (1 + i)
−1/6

(1− d)
1/2

similarly,(
1 + i(30)

30

)(
1− d(5)

5

)
(1− d)

1/2
= (1 + i)

1/30
(1 + i)

−1/5
(1− d)

1/2

= (1 + i)
−1/6

(1− d)
1/2
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