

Solutions to Theory of Interest and Life Contingencies with Pension Applications: A Problem-Solving Approach

Fourth Edition

Michael M. Parmenter, ASA Kevin L. Shirley. FSA, MAAA

TABLE OF CONTENTS

	Page
CHAPTER ONE	1
CHAPTER TWO	10
CHAPTER THREE	15
CHAPTER FOUR	29
CHAPTER FIVE	39
CHAPTER SIX	48
CHAPTER SEVEN	57
CHAPTER EIGHT	77
CHAPTER NINE	93
CHAPTER TEN	117
CHAPTER ELEVEN	133
CHAPTER TWELVE	145
CHAPTER THIRTEEN	153

CHAPTER ONE

1. a.
$$14,000 [1 + 6(.03)] = 16520.00$$

b. $14,000 (1.03)^6 = 16,716.73$
c. $14,000 [1 + \frac{66}{365} (.03)] = 14,075.95$
d. $14,000 [\frac{318}{365} (1.03)^2 + \frac{47}{365} (1.03)^3] = 14909.98$
2. a. $14,000 [1 + 5\frac{96}{365} (.038)] = 16799.92$
c. $14,000 [\frac{269}{365} (1.038)^5 + \frac{96}{365} (1.038)^6] = 17038.60$
3. $a(t) = t^2 + t + 1$, and $i_n = \frac{2n}{n^2 - n + 1}$ from part (e) of Example 1.1.
Then $i_{n+1} = \frac{2(n+1)}{(n+1)^2 - (n+1) + 1} = \frac{2n+2}{n^2 + n + 1}$. Assume $i_{n+1} \ge i_n$. Then $\frac{2n+2}{n^2 + n + 1} \ge \frac{2n}{n^2 - n + 1}$, or $(2n)(n^2 - n + 1) \ge 2n(n^2 + n + 1)$, or $(2n^3 + 2) \ge (2n^3 + 2n^2 + 2n)$, which is clearly false for all $n \ge 1$.
4. a. $a(0) = \sqrt{1 + (i^2 + 2i)0} = 1$; $a(1) = \sqrt{1 + i^2 + 2i} = 1 + i$.
b. $\frac{d}{dt}a(t) = \frac{1}{2} [1 + (i^2 + 2i)t^2]^{-1/2} \cdot 2t = \frac{t}{[1 + (i^2 + 2i)t^2]^{1/2}} > 0$ for $t > 0$, so $a(t)$ is increasing. Furthermore, root functions are continuous in their domain.
c. $a(t) = \sqrt{1 + (i^2 + 2i)t^2} \ge 1 + it$ according as $1 + (i^2 + 2i)t^2 \ge 1 + 2it + i^2t^2$, or according as $2it^2 \ge 2it$, or according as $t \ge 1$. Then $a(t) > 1 + it$ if $t > 1$, but $a(t) < 1 + it$ if $t < 1$.
d. Consider
 $\Delta(t) = (1 + i)^t - a(t) = (1 + i)^t - [1 + (i^2 + 2i)t^2]^{1/2}$.

We find

$$\frac{d}{dt}\Delta(t) = (1+i)^t \cdot \ln(1+i) - \frac{1}{2} \left[1 + (i^2+2i)t^2 \right]^{-1/2} \cdot 2(i^2+2i)t$$
$$= (1+i)^t \cdot \ln(1+i) - \frac{(i^2+2i)}{\left[1/t^2 + (i^2+2i)\right]^{1/2}}.$$

Now as t gets larger, the negative term approaches the constant $(i^2 + 2i)^{1/2}$. Since $(1+i)^t$ increases, then eventually $(1+i)^t \cdot \ln(1+i)$ exceeds the negative term, so $\frac{d}{dt}\Delta(t)$ is eventually positive, so $\Delta(t)$ is eventually increasing, so $(1+i)^t$ eventually exceeds a(t).

- 5. **a.** If $1 + i_n = \frac{a(n)}{a(n-1)}$ is constant, then $\ln(1 + i_n) = \ln[a(n)] - \ln[a(n-1)] = \Delta \ln[a(n-1)]$ is constant as well. By the properties of finite differences, if $\Delta f(n)$ is constant, then f(n) itself is a linear function. Thus we find $\ln[a(n-1)]$, and hence $\ln[a(n)]$ to be a linear function, so $a(n) = e^{\ln[a(n)]}$ is an exponential function, which can be put in the form $(1 + i)^t$.
 - **b.** No. The argument in (a) assumed integral values of t to establish the properties of the Δ operator.
- 6. a. Since A(n-1) is the value of an investment at time n-1, and A(n) is its value at time n, the difference, I_n , is the growth due to interest in the n^{th} time period.
 - **b.** $A(n) A(0) = [A(n) A(n-1)] + [A(n-1) A(n-2)] + \cdots + [A(1) A(0)] = I_n + I_{n-1} + \cdots + I_1$
 - c. The result is intuitive. Clearly A(n) A(0) is the total interest earned over n periods, which is the sum of the interest earned in each period.
 - **d.** $i_1 + i_2 + \dots + i_n = \frac{a(1)-a(0)}{a(0)} + \frac{a(2)-a(1)}{a(1)} + \dots + \frac{a(n)-a(n-1)}{a(n-1)} \neq a(n) a(0),$ so no. The i_r are rates, not amounts, so they are not additive to any meaningful concept.
- 7. **a.** 1000 [1 + .04t] = 1400, so $t = \frac{\frac{14}{10} 1}{.04} = 10$. **b.** 1000(1 + 12i) = 1500, so $i = \frac{\frac{15}{10} - 1}{12} = 4\frac{1}{6}\%$.
 - c. $1000(1.04)^t = 1400$, so $t = \frac{\log 1.40}{\log 1.04} = 8.57894$. $1000(1+i)^{12} = 1500$, so $i = (1.5)^{1/12} - 1 = 3.4366\%$.
- 8. 1000(1+it) = 1060 implies it = .06. Then $500 \left[1 + \left(\frac{2}{3}i\right)(2t)\right] = 500 \left[1 + \frac{4}{3}it\right] = 500 \left[1 + \left(\frac{4}{3}\right)(.06)\right] = 540.$
- **9**. $6000(1.03)^4(1.042)^6 = 8643.83$
- **10.** $(1.043)(1.037)(1.05) = (1+i)^3$, so $i = [(1.043)(1.037)(1.05)]^{1/3} - 1 = 4.332\%.$
- 11. We are given $(1+i)^x = 2$, $2(1+i)^y = 3$, and $(1+i)^z = 5$. In z - x - y years, 6 will grow to $6(1+i)^{z-x-y} = \frac{6(1+i)^z}{(1+i)^x(1+i)^y} = \frac{(6)(5)}{(2)(1.5)} = 10.$

12. We wish to prove that if $(1+i)^x = (1+2i)^y$, then x < 2y for all i, i > 0. Assume $x \ge 2y$. Then $(1+i)^x \ge (1+i)^{2y}$. But $(1+i)^x = (1+2i)^y$, so our implication is $(1+2i)^y \ge (1+i)^{2y}$, or $1+2i(y) + \frac{y(y-1)}{2}4i^2 + \frac{y(y-1)(y-2)}{6}i^3 + \cdots$ $\ge 1+2yi + \frac{2y(2y-1)}{2}i^2 + \frac{2y(2y-1)(2y-2)}{6}i^3 + \cdots$ or $\frac{y}{2}i^2(4y-4) + \frac{y}{6}i^3(8y^2 - 24y + 16) + \cdots \ge \frac{y}{2}i^2(4y-2)$ $+ \frac{y}{6}i^3(8y^2 - 12y + 4) + \cdots$ But (4y-4) is less than (4y-2), so we reach a contradiction, implying

But (4y-4) is less than (4y-2), so we reach a contradiction, implying x < 2y. Therefore statement (a) is true.

13. a.
$$PV = 1000(1 - d)^3 = 884.74$$

b. $(1 + i)^{-1} = 1 - d = .96$, so $i = (.96)^{-1} - 1 = 4.1667\%$
c. $PV = 1000(1 + i)^{-3} = 884.74$

14. **a.**
$$PV = 14,000(1.04)^{-6} = 11064.40$$

- **b.** $PV = 14,000(.96)^6 = 10958.61$
- c. A rate of discount equivalent to a rate of interest is numerically smaller than that rate of interest. If the rates are numerically the same, then the discount is greater than the equivalent interest, so it produces a smaller discounted value.

b. The present value t years in the past is $(1 + it)^{-1}$; 1 - it will turn negative in $\frac{1}{i}$ years.

16.
$$d_n = \frac{a(n) - a(n-1)}{a(n)} = \frac{(1+i)^n - (1+i)^{n-1}}{(1+i)^n} = 1 - \frac{1}{1+i}$$
, which is constant.

- 17. a. Starting with (1.16), $d = \frac{i}{1+i} = i(\frac{1}{1+i}) = iv$. Verbally, the discount on one unit of money is the present value of the interest on that unit.
 - **b.** Since $v = \frac{1}{1+i}$, then $i = \frac{1}{v} 1$, so $d = iv = (\frac{1}{v} 1)v = 1 v$. Verbally, the discount on one unit is equal to the unit minus its discounted value.

- c. i d = i iv = i(1 v) = id. Verbally, the difference between the interest and the discount on a unit of money is the discount on the interest itself.
 d. Since d = i/(1+i), then 1/d = 1+i/i, and 1/d 1/i = i/i = 1.
 e. d (1 + i/2) = d + id/2 = d + i-d/2 = i/2 + d/2; similarly, i (1 d/2) = i id/2 = i i-d/2 = i/2 + d/2.
 f. i(1 d)^{1/2} = d/(1 d)^{1/2} = d(1 d)^{-1/2} = d(1 + i)^{1/2}
 18. a. d³/(1-d)² = d³/(d/2) = (id)²/(d/2) = i²d
 b. (i-d)²/(1-v) = (id)²/(d/2) = i²d
 c. (i d)d = (id)d = id², which is the exception d. i³ i³d = i³(1 d) = i³v = i³(d/i) = i²d
 e. Already is i²d
 19. d = i/(1+i), and we are given i = 210/L and dL = 200.
 - Substituting, we have $\frac{210/L}{1+210/L} \cdot L = 200, \text{ or } \frac{210 \cdot L}{L+210} = 200,$ or 210L = 200L + (200)(210). Then $L = \frac{(200)(210)}{10} = 4200.$
- 20. We will calculate equivalent effective annual rates: A: $i = (1.01025)^4 - 1 = .041635$ B: $i = (1 + \frac{.04096}{5})^5 - 1 = .041637$ C: $i = (1 - \frac{.04064}{10})^{-10} - 1 = .041563$ Thus B is the most advantageous to the investor (largest effective

annual rate), whereas C is most advantageous to Acme Trust (smallest effective annual rate).

21. $AV = 3000(1.009)^{11} = 3310.73$

22. **a.**
$$(1+i) = (1.024)^2$$
, so $i = (1.024)^2 - 1 = 4.8576\%$
b. $\left[1 - \frac{d^{(4)}}{4}\right]^{-4} = (1.024)^2$, so $d^{(4)} = 4\left[1 - (1.024)^{-1/2}\right] = 4.7153\%$
c. $\left[1 + \frac{i^{(12)}}{12}\right]^{12} = (1.024)^2$, so $i^{(12)} = 12\left[(1.024)^{1/6} - 1\right] = 4.7527\%$
d. $(1+j)^6 = 1.024$, so $j = (1.024)^{1/6} - 1 = .396\%$

23. a. We are given
$$100(1 + j) = 102.50$$
, so $j = .025$ effective per half-year.
b. $i^{(2)} = 2j = 5\%$
c. $i = (1.025)^2 - 1 = 5.0625\%$
d. $\left[1 - \frac{d^{(3)}}{3}\right]^{-3} = (1.025)^2$, so $d^{(3)} = 3 \left[1 - (1.025)^{-2/3}\right] = 4.8981\%$
24. $150 = 20 \left(1 + \frac{d}{4}\right)^{4\cdot15} \left(1 + \frac{.04}{2}\right)^{2\cdot25} + 30 \left(1 + \frac{.04}{2}\right)^{2\cdot20}$
 $= 20 \left(1 + \frac{d}{4}\right)^{60} (1.02)^{50} + 30(1.02)^{40}$
 $= 53.8318 \left(1 + \frac{d}{4}\right)^{60} + 66.2412$
 $(1 + \frac{d}{4})^{60} = \frac{150 - 53.8318}{66.2412} = 1.45179$
 $1 + \frac{d}{4} = 1.0062326$
 $\therefore d = .02493$
25. Dara: $500 \left(1 + \frac{i}{4}\right)^{4\cdot11} \left(\frac{i}{4}\right)$
Pramila: $1000 \left(\frac{i}{4}\right)$
 $500 \left(1 + \frac{i}{4}\right)^{4\cdot11} \left(\frac{i}{4}\right) = 1000 \left(\frac{i}{4}\right)$ (assume $i > 0$)
 $\left(1 + \frac{i}{4}\right)^{44} = 2 \Rightarrow i = 4 \left(2^{\frac{1}{4}} - 1\right) = 4(.015878) = 0.06351$
26. $\left[1 + \frac{i^{(n)}}{n}\right] = (1 + i)^{1/n} = \frac{(1 + i)^{1/6}}{(1 + i)^{1/8}} = (1 + i)^{1/24}$. Therefore
 $\frac{1}{n} = \frac{1}{24}$, so $n = 24$.
27. $\left[1 - \frac{d^{(7)}}{7}\right]^{-7} = \left[1 + \frac{i^{(5)}}{5}\right]^5$, so $d^{(7)} = 7 \left[1 - \left(1 + \frac{i^{(5)}}{5}\right)^{-5/7}\right]$
28. $v \left(1 + \frac{i^{(3)}}{3}\right) = (1 - d)(1 + i)^{1/3}$
 $= (1 - d)^{1/2}(1 + i)^{-1/2}(1 + i)^{1/3}$
 $= (1 + i)^{-1/6}(1 - d)^{1/2}$
similarly,
 $\left(1 + \frac{i^{(30)}}{30}\right) \left(1 - \frac{d^{(5)}}{5}\right) (1 - d)^{1/2} = (1 + i)^{1/30}(1 + i)^{-1/5}(1 - d)^{1/2}$